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Abstract 

Anticipated and experienced rewards modulate cognitive control and attention, but the mechanisms of 

these modulations are poorly understood. We compared neuronal responses in monkey dorsolateral 

prefrontal cortex and parietal area 7A, two areas strongly implicated in visual attention and working 

memory, related to probabilistic rewards signaled by familiar visual cues. Neurons in both areas 

encoded the magnitude, probability and expected value (EV) of the reward signaled by the cue. 

Strikingly, neurons also encoded across-trial memories of recent rewards, which, although statistically 

irrelevant to a trialôs expectations, correlated with the monkeysô behavioral sensitivity to reward history. 

Finally, upon outcome delivery, neurons combined responses to the experienced outcome with 

renewed sensitivity to EV and reward history, allowing for population-level decoding of reward 

prediction errors (RPEs) relative to the trialôs EV and reward history. Frontal and parietal areas explicitly 

encode expected and experienced outcomes and provide information relevant to computing model-free 

and model-based RPEs.   



Introduction 

Recent theoretical models of computational rationality and rational inattention postulate that utility-

relevant outcomes such as the punishments or rewards possible in a task modulate not only an 

individualôs choices of action, but the cognitive resources such as memory and attention that the 

individual allocates to the task1, 2. Despite increasing support for this view, empirical studies of the links 

between rewards and cognition are in their infancy. A topic of longstanding interest is the nature of 

reward-related activity in networks of executive control and attention3.  

The expected value of control theory, a recent conceptual framework of executive function, postulates 

that cognitive control involves two processes of, respectively, monitoring and regulation4. A medial 

frontal area, the anterior cingulate cortex (ACC), is thought to monitor the value of a task and choose 

the level of control (cognitive effort) to allocate to the task. More dorsal frontal and parietal areas, in 

contrast, are postulated to play a regulatory role in implementing the working memory and attentional 

policies selected by the ACC.  

Two dorsal areas implicated in cognitive regulation are the dorsolateral prefrontal cortex (dlPFC) and 

parietal area 7A5, which are adjacent to, but functionally distinct from the frontal eye field (FEF) and the 

lateral intraparietal area (LIP) that are associated with eye movements and visual attention. dlPFC and 

7A neurons are sensitive to visual salience and target selection but, unlike FEF and LIP cells, have 

weaker visual responses and pre-saccadic activity6, and instead are more sensitive to non-spatial 

factors such as task context and rules7, 8. Anatomically, 7A and dlPFC lack a strong connectivity to the 

superior colliculus but are reciprocally connected and project to FEF and LIP9, 10. Thus, these areas are 

excellent candidates for providing executive regulation, including sensitivity to incentives, to oculomotor 

and visual structures.  

However, reward-related activity in these areas is incompletely characterized, especially as it relates to 

expectancy and surprise. The reinforcement learning literature postulates that cognitive regulation is 

sensitive to reward expectancy, and specifically to reward prediction errors (RPE) ï the extent to which 

an outcome violates prior expectations. Signed RPEs, indicating whether an outcome is better or worse 

than expected, and their unsigned counterparts (absolute value of a signed RPE indicating general 

expectancy violation) are proposed to signal the need to reduce uncertainty by regulating learning 

rates, attention and information demand11-13. Moreover, computational studies show that RPEs can be 

calculated using model-based algorithms, based on probability distributions relevant to a current task 

state, or using model-free algorithms that rely only on reward history independently of task states to 

produce a potentially suboptimal but more computationally frugal cognitive strategy14.  

Despite the compelling arguments in the theoretical literature, little is known about the encoding of 

reward expectations in areas directly involved in cognitive regulation. A well-characterized neural 

representation of signed RPEs is found in midbrain dopamine (DA) cells, which show excitatory and 

inhibitory responses to outcomes that are, respectively, better or worse than anticipated15. In frontal 

cortical areas, however, RPE-like signals have been reported in the ACC, but their specific features are 

under debate16, 17. Reward-related activity in the dlPFC has only been reported in complex decision and 

learning tasks in which expectations and RPEs are difficult to infer (e.g.,18-21). 7A neurons have not 

been reported to have reward-related activity.  

To examine these questions, we simultaneously recorded the responses of dlPFC and 7A neurons 

while monkeys performed a simple instructed saccade task in which reward magnitudes and 

probabilities varied randomly from trial to trial and were signaled by visual cues. By measuring the 



monkeysô anticipatory licking as a behavioral index of expectancy, we could analyze the neural 

representations of reward expectation/surprise independently of the decision strategies. 

We show that dlPFC and 7A neurons convey both explicit and implicit population-level information 

relevant to computing model-based and model-free RPEs. Neurons in both areas encoded the reward 

magnitude and probability conveyed by the visual cues and integrated this information to code the trialôs 

expected value (EV). Strikingly, the neurons also encoded the value of the previous trial outcome that 

was statistically irrelevant to the current trial EV. These neural responses correlated with the monkeysô 

behavioral sensitivity to reward history, suggesting that they may underlie history-dependent biases that 

have been documented in the behavioral economics literature, such as overconfidence and the hot-

hand fallacy22. Finally, upon outcome delivery, neurons in both areas had robust responses to reward 

size, alongside renewed sensitivity to the trialôs EV and reward history. Responses to expected and 

experienced outcomes were intricately and asymmetrically organized, allowing for population-level 

decoding of rewards that were surprising in two reference frames: relative to the relevant, cue-signaled 

EV and relative to the statistically irrelevant reward history. dlPFC and 7A neurons thus convey rich 

information relevant to computing model-free and model-based reward expectations and RPEs.   

 

Results  

Task and behavior Two monkeys performed a visually guided saccade task in which they formed 

expectations about probabilistic rewards based on trial-specific visual cues (Fig. 1A). On each trial after 

achieving central fixation, the monkeys viewed a visual cue that signaled the magnitude and probability 

of the reward available on the trial (Fig. 1A, cue). The cue was presented for 300 ms at a peripheral 

location to the right or left of fixation and was followed, after a 600 ms memory period, by the 

presentation of the target for a subsequent saccade. After making the required saccade and completing 

a 350 ms post-saccadic fixation, the monkeys received the outcome ï reward receipt or omission - 

according to the schedule predicted by the cue. By requiring monkeys to make instructed saccades, we 

could examine responses to expected rewards independently of decision strategies. Importantly, 

because the locations of the cue and saccade target were independently randomized, the cue only 

provided information about reward contingencies and not about the subsequent action.   

To examine reward-related responses, the monkeys were familiarized with 20 distinct visual cues that 

signaled 10 combinations of reward probability and magnitude with 7 distinct levels of expected value 

(EV; the product of reward probability and magnitude; Fig. 1B). The reward contingencies included 

conditions that varied in reward probability but not magnitude or in reward magnitude but not probability 

(horizontal and vertical axes in Fig. 1B). The cues were colored checkerboard patterns that were 

controlled for discriminability, with the cue-reward associations counterbalanced across monkeys (Fig. 

S1A).  Two distinct cues were assigned to each magnitude/probability combination to control for visual 

selectivity and all 20 cues were presented in random order throughout each daily session (Fig. S1A).   



 

Figure 1. Task (A) A trial began with the presentation of a fixation point (small black square) flanked by two 

placeholders (gray squares). After the monkeys maintained fixation for 300-500 ms (ñFixationò), they were shown 

a reward cue for 300 ms (ñCueò, colored checkerboard) at a randomly selected placeholder location, followed by a 

delay period (ñDelayò) and presentation of the saccade target (ñSaccade & Holdò, bright square). After maintaining 

fixation on the target for 350 ms, the monkeys heard a 200 ms tone signaling the onset of the outcome period, 

and received the outcome (reward omission, or a drop of water of the size that had been predicted by the cue). 

Outcome delivery was followed by an intertrial interval (ITI) during which eye position was unconstrained. (B) The 

entire set of reward contingencies that the monkeys experienced comprised 10 unique combinations of reward 

probability and magnitude (black points). ñPò cues indicated rewards delivered probabilistically with 0.25, 0.5 or 

0.75 probability and maximal size (400 ms, corresponding to 1.0 on the normalized scale; P25, P50 and P75, 

respectively) or with 0.25 and 0.75 probability and half size (P52 and P57, respectively). ñDò cues indicated 

rewards delivered deterministically with either 0 probability (D0, a sure reward omission, which was coded as 0 

probability at 1.0 magnitude in the analyses) or with 100% probability at different magnitudes (D25, D50, D100). 

Areas of constant EV are shown in color; the 10 cue contingencies indicated 7 distinct levels of EV.  

 

We measured the monkeysô anticipatory licking as an index of their reward expectancy. After viewing 

the cue, licking scaled monotonically as a function of the cue-predicted EV, an effect that grew 

throughout the delay period (Fig. 2A, green trace). Regression analysis (Methods, Eq. 3) showed that 

the effect of EV was highly significant in each monkey (Fig. 2A, green marginal histograms; EV 

coefficient in the pre-tone epoch, mean ± standard error (SE): monkey 1: 0.21±0.01, p < 10-10 relative to 

0; monkey 2: 0.05±0.015, p = 0.0006). The response to EV had a quasi-categorical pattern, 

distinguishing most clearly between the two highest levels and 5 lower levels of EV (Fig. 2B, right), 



suggesting that the monkeys tended to summarize the large set of contingencies as representing ñhighò 

or ñlowò EV.  

Because reward contingencies were trial-wise randomized and explicitly cued, the history of recent 

rewards was statistically irrelevant to a trialôs expectations. Nevertheless, the monkeysô licking was 

strongly sensitive to the reward on the previous trial (Fig. 2A, purple trace, Eq. 2). During the fixation 

period preceding cue presentation, licking scaled monotonically with previous reward size (PR;  Fig. 

2B, left) and the PR coefficient was significant in 79% of individual sessions and on average in each 

monkey; (Fig. 2A, left purple histograms; monkey 1: 0.21±0.006, p < 10-10; monkey 2: 0.04±0.01, p = 

0.0001). The effect of PR remained significant in the epoch immediately preceding the outcome, when 

it coexisted with a significant effect of EV (Fig. 2A, right purple histograms; monkey 1: 0.027±0.007, p = 

0.0005; monkey 2: 0.054±0.01, p = 10-6). PR sensitivity was driven mostly by the immediately 

preceding reward with no significant influence of earlier trials (Eq. 4; Fig. 2B, left, inset; beta PR for trial 

-1, 0.75±0.02 for mk 1, p < 10-10; 0.65±0.04 for mk2, p < 10-5; trials -2 to -5, all p > 0.2).  

A potential explanation for the persistent influence of PR is that the monkeys used reward history to 

continuously update their value estimates for probabilistic cues. To examine this hypothesis, we 

examined the effects of cue-specific reward history, by comparing licking as a function of the last 

outcome that had been experienced for a specific cue, or pairs of cues signaling the same probability.  

The regression coefficients for these cue-specific prior rewards were not significantly different from 0, 

showing that the monkeys had stable estimates of probabilities (Fig. S1B). Therefore, the marked 

effect of PR seems to have occurred by default, independently of its relevance for learning or the 

current trial EV.  

 

FIGURE 2. BEHAVIOR (A) LICKING IS SENSITIVE TO EV AND PR THROUGHOUT THE TRIAL. THE TRACES IN THE MIDDLE 

PANEL SHOW THE COEFFICIENTS ESTIMATING THE EFFECTS OF PR (PURPLE) AND EV (GREEN) FROM A REGRESSION 



ANALYSIS (METHODS, EQS. 2 AND 3) COMPUTED IN CONSECUTIVE 100 MS TIME BINS ALIGNED ON CUE AND TONE ONSET. 
THE MARGINAL HISTOGRAMS SHOW THE DISTRIBUTIONS OF PR AND EV COEFFICIENTS ACROSS SESSIONS, IN THE 200 MS 

WINDOWS PRECEDING CUE ONSET (LEFT) AND TONE ONSET (RIGHT). THE TRIANGLES SHOW THE MEANS OF THE 

DISTRIBUTIONS, WITH FILLED COLORS INDICATING P < 0.05 RELATIVE TO 0. (B) AVERAGE EFFECTS OF PR AND EV. THE 

PANELS SHOW THE AVERAGE LR (MEAN AND SEM ACROSS SESSIONS) IN THE TIME WINDOWS HIGHLIGHTED IN A. FOR THE 

PRE-CUE EPOCH (LEFT), LR ARE SHOWN AS A FUNCTION OF PR AND SEPARATED ACCORDING TO EV (GRAYSCALE). FOR 

THE PRE-OUTCOME EPOCH (RIGHT), LR ARE PLOTTED AS A FUNCTION OF EV AND SEPARATED ACCORDING TO PR 

(GRAYSCALE). THE INSET SHOWS THE COEFFICIENTS OF PR (METHODS, EQ. 2) FOR 5 PRECEDING TRIALS (MEAN AND SEM 

ACROSS SESSIONS FOR EACH MONKEY). 

 

Frontal and parietal neurons encode expected and experienced outcomes 

To examine the neuronal encoding of reward expectations, we recorded spiking activity using ñUtahò 

electrode arrays implanted in the pre-arcuate portion of the dlPFC and the posterior portion of area 7A 

(Fig. S2). We describe the responses of 2,034 neurons, of which 1,298 were in the dlPFC (917 in 

monkey 1) and 736 in area 7A (381 in monkey 1). We first describe the neuronsô responses to reward 

anticipation during the pre-cue and delay periods, and to the experienced outcome during the intertrial 

interval (ITI), and end by describing their integration of signals of expected and experienced outcomes 

during the ITI. For all sections, detailed statistical analyses and comparisons between areas are 

presented in Tables 1 and 2.  

Encoding of EV and PR during reward anticipation 

In the pre-outcome epochs, dlPFC and 7A neurons conveyed information about PR and EV. To isolate 

the effects of these factors we evaluated each cellôs firing rates with regression analysis that included 

EV and PR as covariates, along with cue location as a nuisance regressor to control for visuo-spatial 

selectivity (Methods, eq. 5).  

During the delay period, 18% of cells in each area showed sensitivity to EV (Fig. 3A; Table 1). The 

sensitive cells showed both positive and negative scaling (increases or decreases of firing with increase 

in EV) with a small areal asymmetry whereby positive scaling was slightly more common in the dlPFC 

and negative scaling slightly more prevalent in 7A (Table 1). In both areas, EV sensitivity arose at 

median latencies longer than 300 ms after cue presentation and was sustained throughout the delay 

period (Fig. 3A, bottom, Table 1) indicating that it was not a mere visual response to the cues. 

Although the sensitive cells showed stronger modulations in the dlPFC (Fig. 3A, bottom, Table 1) the 

effect latencies did not significantly differ between the two areas (Fig. 3A, bottom, Table 1).   

Selectivity to PR was as uncorrelated with sensitivity to EV (Table 2; r = 0.06 in dlPFC and r = -0.05 in 

7A) and found in more than a third of the cells in each area (48% in the dlPFC and 35% in 7A; Fig. 3B 

top; Table 1). In both areas, PR-sensitive cells showed predominantly positive scaling (Fig. 3B top; 

Table 1) and sustained sensitivity throughout the fixation, cue and delay periods (Fig. 3B, bottom). 

However, PR sensitivity arose with latencies of more than 100 ms after fixation onset (Fig. 3B, bottom; 

Table 1), showing that it was not a mere persistence of the activity from the previous trial (a point to 

which we return below). PR-sensitive cells were more prevalent and showed stronger modulations in 

the dlPFC and, importantly, also had shorter latencies in dlPFC relative to 7A (Fig. 3B, Table 1). Thus, 

while dlPFC and 7A provided simultaneous information about the trialôs EV, PR sensitivity was 

considerably stronger and arose earlier in the dlPFC.  



 

FIGURE 3. DLPFC AND 7A NEURONS ARE SENSITIVE TO EV AND PR (A) EV SELECTIVITY. THE TOP PANEL SHOWS THE 

DISTRIBUTION OF EV COEFFICIENTS (METHODS, EQ. 4) MEASURED IN THE DELAY PERIOD IN THE DLPFC (ORANGE) AND 7A 

(BROWN). DARKER SHADING INDICATES CELLS WITH SIGNIFICANT SELECTIVITY AS DEFINED IN METHODS.  THE BRACKET 

AND STAR INDICATES P < 0.05 FOR A COMPARISON OF DLPFC AND 7A. THE BOTTOM PANEL SHOWS THE TIME COURSE OF 

EV SELECTIVITY CALCULATED BY APPLYING EQ. 4 IN A SLIDING WINDOW WITH 50 MS BINS AND 2 MS STEPS ALIGNED ON CUE 

ONSET. THE TRACES SHOW THE MEAN AND SEM COEFFICIENT FOR THE SUBSETS OF SELECTIVE NEURONS WITH POSITIVE 

AND NEGATIVE SCALING (EV+ AND EV-) IN DLPFC (ORANGE) AND 7A (BROWN). TRIANGLES AND LINES SHOW THE MEDIAN 

LATENCY AND INTERQUARTILE-INTERVAL FOR THE CORRESPONDING GROUP, AND STARS INDICATE P < 0.05 FOR THE 

LATENCIES IN DLPFC AND 7A. (B) PR SELECTIVITY: TOP PANEL SHOWS THE DISTRIBUTION OF PR COEFFICIENTS AND THE 

BOTTOM PANEL, THE TIME COURSE OF SELECTIVITY IN PR+ AND PR- CELLS IN THE SAME FORMAT AS IN A. 

 

The neural responses to PR and EV followed similar patterns as the monkeysô licking response. EV-

sensitive cells had a quasi-categorical firing rate pattern that resembled the monkeysô licking response, 

and was driven primarily by responses to the two highest levels of EV (whether this was an increase or 

decrease in firing for cells with, respectively, positive and negative modulations; Fig. 4A; cf Fig. 2B, 

right). To quantitatively evaluate the correspondence with the monkeysô expectations we conducted a 

representational similarity analysis, by computing the pairwise discriminability among 35 trial categories 

defined by 7 levels of EV and 5 levels of PR. We found strong positive correlations between the 

representations of these categories in the licking response and firing rates of dlPFC and 7A cells (Fig. 

4B; monkey 1: PFC r = 0.7; 7A r = 0.64; monkey 2: PFC r = 0.5; 7A r = 0.24; all p < 10-18), showing that 

the neural representation of PR and EV mirrored the monkeysô reward expectancies.   



While EV is a key economic quantity, it is unknown how it is computed based on more primary 

variables of reward magnitude and probability. To examine this question, we separately estimated the 

neuronsô sensitivity to each factor using trials with probabilistic and deterministic cues (Fig. 1B; 

(Methods, eq. 6,7). Despite being evaluated on different trials, neural sensitivity to reward probability 

and magnitude were highly correlated (Fig. 4C, Table 2) and each coefficient was correlated with EV 

sensitivity (Table 2). These correlations are in sharp contrast with the independence between EV and 

PR sensitivity and other task-related regressors (Table 2, see also below) suggesting that the neurons 

integrate information about probability and magnitude for computing EV.  

 

FIGURE 4. PROPERTIES OF THE EV SELECTIVITY (A) PERI-STIMULUS TIME HISTOGRAMS (PSTHS) OF CUE-ALIGNED FIRING 

RATES FOR EV+ AND EV- CELLS IN EACH AREA SHOW A QUASI-CATEGORICAL PROFILE, WITH THE STRONGEST 

MODULATIONS FOR THE TWO HIGHEST EV (0.75 AND 1.0). THE HISTOGRAMS ARE CONSTRUCTED BY CONVOLVING RAW 

FIRING RATES WITH A 100MS BOXCAR MOVING AVERAGE FOR 5 LEVELS OF EV (0, 0.25, 0.5, 0.75, 1). THE INSETS SHOW 

FIRING RATES (MEAN AND SEM DURING THE DELAY PERIOD) AS A FUNCTION OF EV (B) REPRESENTATIONAL SIMILARITY 

ANALYSIS PLOTTING THE DISCRIMINABILITY (AD INDEX) BETWEEN ALL PAIRS OF REWARD CONTINGENCIES IN THE LR (X 

AXIS) VERSUS FIRING RATES (Y AXIS). EACH POINT IS A PAIR OF CONTINGENCIES AND THE LINES SHOW THE BEST FIT 

REGRESSION (BLACK, MONKEY 1, GRAY, MONKEY 2). (C) CORRELATIONS BETWEEN REWARD MAGNITUDE COEFFICIENTS ON 

TRIALS WITH DETERMINISTIC CUES (FIG. 1A) AND PROBABILITY COEFFICIENTS ON TRIALS WITH PROBABILISTIC CUES (FIG. 
1A). EACH POINT IS ONE NEURON AND THE LINES SHOW THE BEST FIT REGRESSION (BLACK, MONKEY 1, GRAY, MONKEY 2). 

 

Encoding of the outcome 

Large populations of neurons in both areas showed their strongest responses upon outcome delivery. 

Outcome related activity consisted of sensitivity to the magnitude of the current reward (CR), which was 

significant, and sustained throughout the ITI, in 63% of dlPFC cells and 47% of 7A cells (Methods, eq. 

8; Fig. 5A, Table 1). CR sensitivity showed predominantly negative scaling, with more than 60% of the 

sensitive cells in each area responding most strongly to omission of reward (CR = 0; Fig. 5A, Table 1). 

Although very robust in both areas, CR sensitivity was stronger in dlPFC, as indicated by the higher 



prevalence of significant selectivity (63% vs 47%, p < 10-12; Fig. 5A, Table 1), and, in the sensitive 

cells, larger coefficients and shorter latencies in the dlPFC relative to 7A (Fig. 5A, Table 1) 

The fact that CR encoding was sustained throughout the ITI raises the possibility that it carried over into 

the following trials and explained the neuronsô sensitivity to PR. As noted above, the fact that PR 

sensitivity was often not present at the start of a trial argues against this possibility (Fig. 4B). As further 

evidence that CR and PR selectivity are distinct, the coefficients indexing these effects were 

uncorrelated (Table 2). As further verification we carried out cross-epoch decoding analyses testing 

whether classifiers trained to decode CR can provide effective read-outs of PR and vice versa (Fig. 

5B). In both dlPFC and 7A, classifiers trained to decode CR during the last portion of the ITI were 

significantly less accurate at decoding the same quantity during the fixation period of the following trial 

(here denoted ñPRò) than they were during an equivalently distant time window in the early part of the 

ITI (Fig. 5B, left). Similarly, classifiers trained to decode PR during the fixation epoch were significantly 

less accurate in decoding the same quantity during the preceding ITI (here denoted CR) relative to an 

equivalently distant time period in the following trial (Fig. 5B, right). Therefore, PR sensitivity was not a 

mere persistence of a CR response but actively emerged in a distinct population of cells at the start of a 

trial.  

 

FIGURE 5. DLPFC AND 7A NEURONS ENCODE THE OBTAINED REWARD SIZE (A) THE DISTRIBUTION OF CR SELECTIVITY 

(TOP) AND THE TIMECOURSE OF SELECTIVITY IN THE SENSITIVE CELLS, ALIGNED ON TONE ONSET. OTHER CONVENTIONS AS 

IN FIG. 3.  (B) PR IS NOT A MERE PERSISTENCE OF THE CR RESPONSE. ACROSS-EPOCH CLASSIFICATION ANALYSIS 

BETWEEN THE ITI AND FIXATION ONSET ON THE FOLLOWING TRIAL. FIRING RATES WERE DIVIDED IN 4 CONSECUTIVE 300 MS 

EPOCHS CENTERED ON TRIAL ONSET (FIXATION POINT ONSET). LOGISTIC CLASSIFIERS WERE TRAINED TO DECODE CR (OR 

PR) FROM THE ACTIVITY OF SIMULTANEOUSLY RECORDED CELLS IN EACH AREA USING THE WINDOW IMMEDIATELY 

PRECEDING TRIAL ONSET (LEFT PANEL, WINDOW 2) OR THE WINDOW IMMEDIATELY FOLLOWING THE TRIAL ONSET (RIGHT 

PANEL, WINDOW 3). THE TRACES SHOW CLASSIFICATION ACCURACY ABOVE THE SHUFFLE CONTROL (MEAN AND SEM 

ACROSS SESSIONS) FOR DLPFC (ORANGE) AND 7A (BROWN). FOR WINDOWS THAT WERE EQUALLY DISTANT FROM THE 



TRAINING INTERVAL, CLASSIFICATION WAS SIGNIFICANTLY MORE ACCURATE WHEN TESTED WITHIN THE SAME TRIAL 

RELATIVE TO ACROSS TRIALS IN BOTH AREAS (* P < 0.05; ** P < 0.001). 

 

Integration of experienced and expected outcomes implicitly signals RPE 

In addition to encoding CR during the ITI epoch, many neurons carried information about EV and PR. 

We estimated sensitivity to EV and PR during the ITI (EV_ITI and PR_ITI) by entering EV and PR as 

regressors alongside with CR while controlling for cue and target location (Methods, eq. 8).   

A straightforward possibility is that the post-outcome responses to EV and PR were mere continuations 

of the neuronal sensitivity to these variables preceding the outcome. Contrary to this hypothesis, 

coefficients to EV and PR were only weakly correlated with those for EV_ITI and PR_ITI (Table 2). 

Moreover, cross-epoch decoding showed that both variables were distinctively represented before 

versus after the outcome. In both dlPFC and 7A, classifiers trained to decode PR or EV immediately 

before outcome delivery were significantly less accurate at decoding the corresponding variable during 

the ITI, relative to an equally distant time window during the trial (Fig. 6A, left). Similarly, classifiers 

trained to decode PR or EV immediately after outcome delivery were significantly less accurate in 

decoding the variables before outcome delivery relative to an equally distant time period after the 

outcome (Fig. 6A, right). Thus, dlPFC and 7A cells showed new representations of EV and PR 

information during the ITI, which were distinct from those used during the trial.  

 

Figure 6. EV and PR encoding during the ITI is not a mere persistence of trial responses. Logistic 

classification performed as in Fig. 5B, but trained to decode PR (top) and EV (bottom) in 600 ms epochs 

immediately preceding (A) or following (B) the tone onset. All conventions as in Fig. 5B.  

 



Although the coefficients to PR_ITI, EV_ITI were not correlated with the coefficients for CR (Table 2), 

sensitivity to PR_ITI and EV_ITI differed markedly depending on the trialôs outcome, and this 

dependence was opposite for the two quantities. Moreover, the polarities of the PR_ITI and EV_ITI 

responses were skewed in opposite directions for the two quantities. Coefficients for PR_ITI were 

predominantly positive, indicating that most neurons had enhanced ITI firing for trials following a larger 

prior reward (Fig. 7A, B; Table 1). In addition, PR_ITI sensitivity was much stronger after reward 

omission rather than receipt, for the entire population (Fig. 7A) and for the subset of sensitive cells 

(Fig. 7B). These trends were highly robust in both areas; in the dlPFC, PR_ITI coefficients were 

4.79±0.29 after reward omission versus 1.56±0.16 after reward receipt (all neurons, p < 10-14); in 7A, 

the corresponding values were 2.56±0.45 vs 0.43±0.2 (all neurons, p < 10-11).   

The polarity and outcome dependence were opposite for EV_ITI, although EV_ITI modulations were 

overall weaker. The coefficients for EV_ITI were predominantly negative, indicating that most neurons 

had enhanced firing for trials with lower EV (Fig. 7C, D; Table 1). Moreover, EV_ITI sensitivity, was 

stronger (more negative) after reward receipt relative to omission in the subset of sensitive cells (Fig. 

7D) and across the population (Fig. 7C). The dependence on outcome was only a trend in area 7A 

(EV_ITI coefficients of -0.26±0.12 after reward receipt vs -0.23±0.37 after omission, all neurons, p = 

0.74) but was highly robust in the dlPFC (EV_ITI coefficients of -1.35±0.13 versus 0.67±0.69, all 

neurons, p < 10-19).  

Together, the asymmetries produced by the outcome and encoding polarity resulted in an emphasis on 

outcomes that were surprising relative to, respectively, PR and EV. Firing rates were strongest for 

reward omissions that were surprising relative to a rich reward history (Fig. 7A, B). In addition, firing 

rates were enhanced for rewards that were surprising relative to a low cue-signaled EV (Fig. 7C,D).  

 



 

FIGURE 7. EV AND PR ENCODING DURING THE ITI DIFFER IN POLARITY AND INTERACTIONS WITH THE OUTCOME (A) 

ACROSS THE POPULATION, THE SENSITIVITY TO PR_ITI IS STRONGER AFTER REWARD OMISSION AND PREDOMINANTLY 

POSITIVE COMPARISON OF REGRESSION COEFFICIENTS FOR PR_ITI (METHODS, EQ. 8) ON REWARDED AND UNREWARDED 

TRIALS, FOR ALL THE RECORDED CELLS. EACH POINT IS ONE CELL (ORANGE: DLPFC; BROWN: 7A). IN THE MARGINAL 

HISTOGRAMS, DARKER SHADING SHOWS SIGNIFICANT CELLS. THE TRIANGLES SHOW MEANS WITH FILLED SYMBOLS 

INDICATING P < 0.05 RELATIVE TO 0.  (B) IN THE SENSITIVE CELLS, THE EFFECT OF PR_ITI IS STRONGER AFTER REWARD 

OMISSION AND PREDOMINANTLY POSITIVE THE TOP TWO PANELS SHOW AVERAGE PSTHS FOR ALL THE CELLS WITH PR_ITI 
SENSITIVITY, ALIGNED ON TONE ONSET, FOR REWARDED VERSUS UNREWARDED TRIALS AND FOR EACH LEVEL OF PR 

(GRAYSCALE). THE TRACES SEPARATE BY THE TYPE OF OUTCOME, WITH HIGHER FIRING RATES AFTER REWARD OMISSION 

RELATIVE TO REWARD RECEIPT, DUE TO THE NEURONSô NEGATIVE SCALING WITH CR. FOR EACH OUTCOME, THE NEURONS 



HAVE THE STRONGEST RESPONSES FOR THE HIGHEST PR, AND THIS EFFECT IS STRONGER AFTER OMISSION OF REWARD. 
THE BOTTOM PANEL SHOWS THE PR_ITI COEFFICIENTS FROM EQ. 8 COMPUTED IN A SLIDING WINDOW OF 50 MS WIDTH AND 

2MS STEPS. THE TRACES SHOW THE MEAN AND SEM ACROSS THE SENSITIVE CELLS IN DLPFC (ORANGE) AND 7A 

(BROWN), SEPARATELY FOR TRIALS ENDING IN REWARD (DARKER SHADE) AND REWARD OMISSION (LIGHTER SHADING). (C) 
ACROSS THE POPULATION, THE SENSITIVITY TO EV_ITI IS STRONGER ON REWARDED TRIALS AND PREDOMINANTLY 

NEGATIVE. SAME CONVENTIONS AS IN A. (D) IN THE SENSITIVE CELLS, THE EFFECT OF EV_ITI IS STRONGER ON 

REWARDED TRIALS AND PREDOMINANTLY NEGATIVE. SAME CONVENTIONS AS IN B. 

 

To determine whether these asymmetries reflected bona fide encoding of RPEs, we plotted firing rates 

as a function of RPEs defined in two references frames. We defined PR_RPE as the difference 

between the magnitude of the current and prior reward, capturing the surprisingness of an outcome 

relative to reward history. We defined EV_RPE as the difference between the reward magnitude and 

the trialôs EV, capturing the surprisingness of an outcome relative to the cue-predicted EV. We then 

computed for each cell the absolute firing rate modulation relative to its average activity to capture how 

much the cell modulates as a function of PR_RPE and EV_RPE.  

This analysis showed that individual cells did not have a strong linear encoding of PR_RPE or 

EV_RPE. For PR_RPE, the population showed an approximate skewed U-shape function (Fig. 8A), 

modulating more strongly at extreme relative to intermediate values of PR_RPE, and more strongly at 

negative relative to positive values PR_RPE. This non-linear effect, however, was not entirely 

consistent for rewarded and unrewarded trials (solid vs dashed traces in Fig. 8A), was weak for area 

7A, and was found only in a minority of individual cells (Fig. S3; dlPFC: cluster 3, 24% of the cells; 7A: 

cluster 5, 14% of the cells). A consistent relation with EV_RPE was even more elusive. The population 

response showed a weak U-shaped pattern with a trend for stronger modulation for extreme values of 

EV_RPE (Fig. 8B), but this profile was very weak in area 7A and was only found in a small subset of 

cells in the dlPFC (Fig. S3, cluster 6, 11% of cells). 



 

FIGURE 8. PR_RPE AND EV_RPE ARE NOT LINEARLY ENCODED IN INDIVIDUAL CELLS BUT CAN BE DECODED ACROSS THE 

POPULATION (A) NON-LINEAR RESPONSE TO PR_RPE THE ABSOLUTE DEVIATION FROM THE AVERAGE FIRING RATES AS A 

FUNCTION OF PR_RPE, AFTER REWARD RECEIPT (SOLID) AND OMISSION (DASHED). THE POINTS SHOW THE MEAN AND 

SEM FOR ALL THE CELLS IN DLPFC (ORANGE) AND 7A (BROWN). (B) DECODING OF PR_RPE DISTRIBUTIONS OF 

DECODING ACCURACY (AFTER SUBTRACTION OF ACCURACY IN SHUFFLED TRIALS) ACROSS THE RECORDING SESSIONS, FOR 

DLPFC, 7A, AND LR, AND FOR SIGNED AND UNSIGNED PR_RPE. (* P < 0.05; ** P < 0.001) (C) NON-LINEAR RESPONSES 

TO EV_RPE SAME CONVENTIONS AS IN A. (D) DECODING OF EV_RPE SAME CONVENTIONS AS IN B. 

Therefore, the combination of asymmetric signals about the experienced and expected outcome did not 

amount to a formal encoding of RPE in individual cells. Nevertheless, this combination allowed 

decoding of PR_RPE and EV_RPE from the population response. Simple logistic decoders read out 

both signed and unsigned PR_RPE and EV_RPE with above-chance accuracy from the population 

response in both areas (Fig. 8C, D). Decoding accuracy was equivalent for signed and unsigned RPE, 

but was higher in dlPFC relative to 7A and was higher for PR_RPE relative to EV_RPE (3-way ANOVA 

across sessions, p = 0.9 for signed/unsigned; p = 0.005 for area; p = 0.0003 for PR_RPE vs EV_RPE). 

Thus, RPE was conveyed more reliably by the dlPFC relative to the 7A population and, remarkably, 

was conveyed more reliably if referenced to the statistically irrelevant reward history than to the task-

relevant cue. Finally, PR_RPE and EV_RPE could be decoded from the monkeysô licking responses in 

both their signed and unsigned forms, showing that these quantities were behaviorally significant.  

   



Discussion 

Spearheaded by the early investigations of Mountcastle and his colleagues23, recent studies of the 

inferior parietal lobe focused heavily on LIP, a small area on the lateral bank of the intraparietal sulcus 

that is associated with spatial orienting through eye movements and visual attention. Fewer studies, in 

contrast, targeted area 7A that occupies a much larger swath of cortex on the adjacent gyral surface. 

These studies showed that 7A neurons selectively respond to salient targets of visual search similar to 

dlPFC cells24 and transmit information about task context and rules that at least partially reflect top-

down signals from the dlPFC7, 8. Together with the strong reciprocal connections between 7A and the 

dlPFC9, these findings suggest that this area is an important node in the fronto-parietal network 

mediating executive control and attention.  

We extend these results by showing that 7A neurons also show sensitivity to expected and experienced 

rewards like that found in the dlPFC. Using a task that allowed us to focus on reward expectations 

independently of learning or decision strategies, we show that neurons in both areas carry signals 

encoding expected and experienced outcomes and combine these signals to allow decoding of RPEs in 

two reference frames - relative to the cues and relative to statistically irrelevant reward history. We 

discuss each finding in turn.  

Expected value. In the task that we used, monkeys viewed familiar, extensively trained visual cues that 

signaled the reward distribution that was in effect on each trial. Stimuli with familiar reward associations 

gain salience and the ability to automatically bias attention25. We previously showed that, in area LIP, 

such stimuli evoke enhanced short-latency visual responses independently of the monkeysô reward 

expectations, suggesting that one mechanism of reward-based salience involves visual plasticity26. 

Such plasticity, however, did not account for the EV encoding in 7A and dlPFC. Instead, neurons in 

these areas had sustained encoding of EV that emerged at long latencies of nearly 300 ms and had a 

quasi-categorical response pattern that corresponded to the monkeysô expectations, suggesting that 

they signaled true predictive activity rather than salience or visual plasticity.  

The EV-sensitive cells were equally likely to show positive or negative scaling, consistent with previous 

findings in the ACC and OFC in tasks involving reward-based decisions17. Moreover, we show that 

dlPFC and 7A cells had bona fide sensitivity to reward magnitude and probability, similar with previous 

findings during decision making in the ventromedial prefrontal cortex27. Thus, the properties of EV 

coding may be shared across frontal and parietal areas independent of active decision strategies.  

Experienced reward. Upon receipt of an outcome, a large fraction of 7A and dlPFC cells had robust 

responses encoding reward size, with most cells showing negative scaling ï enhanced firing to smaller 

relative to larger rewards. Strong reward-related responses with negative scaling are widespread 

throughout the PFC (e.g., 28-30).  Our finding that outcome information had shorter latencies in the 

dlPFC relative to 7A suggests that these responses are conveyed in a top-down fashion from the frontal 

to the parietal lobe, consistent with the proposed evolutionary role of the PFC in detecting (and 

eventually minimizing) foraging errors31.  

Reward memory. A perhaps more striking result was that, in addition to their sensitivity to actual 

rewards and task-relevant cues, the neurons conveyed memories of recent rewards that were 

statistically unrelated to a trialôs EV. PR-sensitive cells in both areas encoded the size of the prior 

reward in ways that were not explained by mere persistence of activity and reflected the monkeysô 

behavioral sensitivity to reward history.  



The ability to integrate information on longer time scales is a consistent feature of frontal and parietal 

areas, and these areas have been reported to convey across-trial information about context, rules, the 

presence of conflict as well as rewards (reviewed in 21). In most previous studies, however, the 

extended memories were adaptive for performing a task, correlating with improved rule-based 

performance or adaptation to conflict21, decision making32, 33 and learning19, 20, 34. An additional study 

reported that dlPFC neurons respond to irrelevant reward history in a complex rule-based task, but 

found no manifestations of these responses in the monkeysô strategy35.  Our findings extend the 

literature by showing that encoding of reward history is correlated with a strong behavioral bias that 

distorted the monkeysô expectations relative to the optimal inference based on the cue-signaled EV.  

Our results thus provide a likely neural correlate for the ñhot-handò fallacy, a well-known economic bias 

whereby decision makers (humans and monkeys) choose as if they expected positive or negative 

outcomes to happen in streaks independently of their true autocorrelations22. Our findings suggest that 

biases due to irrelevant recent rewards may rely primarily on the frontal cortex, since PR sensitivity 

emerged earlier and was stronger in the dlPFC relative to 7A and may be conveyed from anterior to 

posterior areas (see also17). Thus, the specific contributions of frontal and parietal areas to effects of 

irrelevant reward-history in different task contexts (along with effects of irrelevant recent stimuli or 

actions36) are important topics for future investigations.  

Implicit encoding of RPEs in different reference frames. A final striking aspect of our results is that, in 

addition to influencing reward expectation, sensitivity to PR was reinstated during the ITI, leading to an 

integration of information about consecutive outcomes. The neuronsô simultaneous sensitivities to the 

current and previous outcome, although carried by independent populations of cells, produced 

enhanced firing for reward omissions that were surprising relative to large prior rewards. Interestingly, 

individual neurons did not fulfill the criteria of encoding RPEs, since they did not scale monotonically 

with PR_RPE or show anti-correlated sensitivity during expectation and outcome delivery (as reported 

in the ACC17). Nevertheless, reliable inferences about signed and unsigned PR_RPE could be obtained 

from the population. An analogous dynamic was found for EV information, which emerged in the ITI and 

resulted in higher responses for rewards that were surprising relative to the trialôs EV, allowing 

decoding of EV_RPE despite a lack of explicit encoding of this quantity by individual cells. The ITI 

signals of PR and EV were carried by distinct populations of cells relative to those encoding these 

quantities during the trial, suggesting that they reflected active computation rather than mere 

persistence of the trialôs activity. Consistent with this, PR_RPE and EV_RPE both influenced the 

monkeysô licking responses.  

Prediction errors provide rich information about a task context and, when defined in different reference 

frames, can serve different behavioral goals37. RPEs calculated relative to task-relevant cues may 

serve to update state-specific reward expectations or monitor the validity of the informative cues38. 

RPEs defined relative to reward history, in contrast, may serve to monitor the overall reward rate for 

longer-range foraging decisions ï e.g., whether to persist with a task or forage for alternative 

situations31.  

From a computational perspective, the EV-referenced RPEs we describe were based on the true 

transition probabilities given a task state and are thus similar to model-based RPEs. In contrast, the 

PR-referenced RPEs were based on state-independent reward history, consistent with model-free 

mechanisms. A conclusive mapping of our results on model-based and model-free algorithms will 

require further studies that use computational modeling or specialized tasks such as reinforcer 

devaluation14, 39. Nevertheless, our findings that these quantities are simultaneously represented in 

frontal and parietal cells is consistent with the fact that model-free and model-based mechanisms jointly 



influence behavior40 and, during observational learning, are both encoded in the human intraparietal 

sulcus41. Thus, our results provide a concrete neural mechanism that may underlie the computation of 

model-based and model-free RPEs, which can be evaluated against recently proposed alternative 

algorithms14.  

   

 

  



Methods 

General methods. Data were collected from two adult male rhesus monkeys (Macaca mulatta; 
9-12kg) using standard behavioral and neurophysiological techniques as described previously42. All 
methods were approved by the Animal Care and Use Committees of Columbia University and New 
York State Psychiatric Institute as complying with the guidelines within the Public Health Service Guide 
for the Care and Use of Laboratory Animals. Visual stimuli were presented on a MS3400V XGA high 
definition monitor (CTX International, INC., City of Industry, CA; 62.5by 46.5 cm viewing area). Eye 
position was recorded using an eye tracking system (Arrington Research, Scottsdale, AZ). Licking was 
recorded at 1 kHz using an in-house device that transmitted a laser beam between the tip of the juice 
tube and the monkeyôs snout and generated a 5V pulse upon detecting interruptions of the beam when 
the monkey extended his tongue to obtain water.  

Task. A trial started with the presentation of two square placeholders (1ę width) located along the 
horizontal meridian at 8º eccentricity to the right and left of a central fixation point (white square, 0.2ę 
diameter). After the monkey looked maintained gaze on the fixation point for 300-500 ms (fixation 
window, 1.5-2ę square) a randomly selected placeholders was replaced for 300 ms by a reward cue ï a 
checkerboard pattern indicating the trialôs reward contingencies (see Fig. S1A for detailed description 
of the visual appearance of the cues).  After a 600ms delay period, the fixation point disappeared 
simultaneously with an increase in luminance of one of the placeholders (the target), whose location 
was randomized independently from that of the cue. If the monkey made a saccade to the target with a 
reaction time (RT) of 100 ms ï 700 ms and maintained fixation within a 2.0-3.5ę window for 350 ms, he 
received a reward with the magnitude and probability that had been indicated by the cue. An auditory 
tone (200 ms, 500 Hz) signaled the end of the post-saccadic hold period on all trials, providing a 
temporal marker for the onset of the outcome/ITI period whether a reward was received or omitted. 
Rewards, when delivered, were linearly scaled between 0.28 to 1.12mL. The ITI ï from tone onset to 
the onset of the fixation point on the following trial lasted for 1200-1600 ms. Error trials (resulting from 
fixation breaks, premature, late or wrong-direction saccades) were immediately repeated until correctly 
completed, precluding the monkeys from aborting trials in which they anticipated lower rewards. 
Monkeys were extensively familiarized with the task and all the cues before recordings began. 

Neural recordings. After completing behavioral training, each monkey was implanted with two 
48-electrode Utah arrays (electrode length 1.5 mm) arranged in rectangular grids (1 mm spacing; 
monkey 1, 7x7 mm, monkey 2, 5x10 mm) and positioned in the pre-arcuate portion of the dlPFC and 
the posterior portion of area 7A (Figure S2). Data were recorded using the Cereplex System 
(Blackrock, Salt Lake City, Utah) over 22 sessions spanning 4 months after array implantation in 
monkey 1, and 12 sessions spanning 2 months after implantation in monkey 2.   

Data analysis. Error trials were discarded and not considered further (13.7% in monkey 1, 

14.3% in monkey 2). All statistical analyses were preceded by tests of normality and symmetry (p < 

0.05). For univariate comparisons we used the Wilcoxon-signed-rank test if the symmetry criterion was 

met, and the Mann-Whitney U-test otherwise. Correlation coefficients were computed using the 

Spearman Rank test. 

Behavior. Eye position was digitized at 220 Hz, and saccade RT was defined using velocity and 

acceleration criteria43. While RT showed some effects of reward contingencies and spatial congruence 

between cue and target locations, these effects were not consistent and are not reported here.    

Trial-by-trial licking rates (LR) were defined as the proportion of time spent licking in a time 

window of interest. To estimate the effects of PR we focused the analysis on pairs of consecutive 

correct trials. We used a 3-step hierarchical analysis (eq. 1-3) to separately estimate the influence of 



PR and EV on LR. In the first step we partitioned out the effect of the prior trialôs outcome type (reward 

receipt of omission):  

 
0 1

*LR PRNReb b= + +  (1) 

where RNR is an indicator equal to 1 if the prior trial was reward and 0 otherwise. In the second step 

used the residuals from eq. 1 to estimate the effect of PR: 

 
0 1

*
PRNR

PRLR eb b= + +  (2) 

where 
PRNRLR  are the residuals from eq. 1, and PR is the magnitude of the prior reward (0, 0.25, 0.5, 

0.75, 1). Thus, the PR coefficients we report estimate the monkeysô sensitivity to the size of the prior 

reward above and beyond the mere presence of a reward. Finally, in the third step we used the 

residuals from eq. 2 to estimate the effect of EV: 

 
0 1

*
PR

EVLR eb b= + +  (3) 

Where 
PRLR  are the residuals from equation 2, and EV is the expected value of the current cue (0, 

0.125, 0.25, 0.375, 0.5, 0.75, 1).  

To assess the temporal window over which reward history exerted effects, licking was regressed 
against the value of the prior reward (0, 0.25, 0.5, 0.75, 1) for the 5 previous trials, omitting error trials: 

 1 2 3 4 50 1 2 3 4 5
* * * * *n n n n nLR PR PR PR PR PR eb b b b b b- - - - -= + + + + + +  (4) 

Neural responses. Raw spikes were sorted offline using WaveSorter44 and analyzed with 
MatLab (MathWorks, Natick, MA) and Mathematica (Champaign, IL). Only neurons with waveforms 
clearly separated from noise were included in the analysis.  All neural analyses were computed on 
unsmoothed firing rates (FR) that had been normalized within each cell by subtracting the FR averaged 
across the entire epoch from fixation onset until the end of the ITI.  

We used regression analyses to measure the sensitivity to EV, PR and CR.  All regressors 

ranged between 0 and 1, and took values of [0, 0.125, 0.25, 0.375, 0.5, 0.75, 1] for EV, and [0, 0.25, 

0.5, 0.75, 1] for PR and CR. Coefficients are reported in units of sp s-1, and sensitive cells are defined 

as those showing a coefficient with p-value < 0.05.   

We included cue location (CL) and target location (TL) as nuisance regressors (coded as 0 or 1 for the 

hemifield that was, respectively, ipsilateral or contralateral to the recording site), ensuring that we 

estimate sensitivity to reward variables independently of spatial coding or reward x space interactions.  

To estimate the effects of PR and EV (Fig. 3 and Table 1) we fit FR using the equation:  

 0 1 2 3 4 5* * * *( ) *( )FR PR EV CL PR CL EV CLb b b b b b e= + + + + Ö + Ö +  (5) 

We defined a cell as being PR-sensitive if it showed a significant b1 coefficient in the interval 0 ï 1,000 

ms after fixation point onset, and EV-sensitive if it showed a significant b2 coefficient in the delay period 

(300 - 900 ms after cue onset).  



To estimate the effects of reward probability (P) we fit firing rates on trials with probabilistic cues using 

the equation: 

 0 1 2 3 4 5* * * *( )FR PR P CL PR CLb b b b b b e= + + + + Ö + +  (6) 

To estimate the effects of reward magnitude (RM) we fit firing rates on trials using deterministic cues 

using the equation: 

 0 1 2 3 4 5* * * *( )FR PR RM CL PR CLb b b b b b e= + + + + Ö + +                                                  (7)  

We defined a cell as being sensitive to probability or magnitude if it had a significant coefficient in the 

delay period (same interval as that used to measure sensitivity to EV).   

To estimate the effects of CR, EV_ITI and PR_ITI we fit FR using the equation: 

0 1 2 3 4 5 6 7* * * * * *( ) *( )FR PR EV CR CL TL CR CL CR TLb b b b b b b b e= + + + + + + Ö + Ö +  (8) 

To estimate sensitivity to CR we applied this equation to all trials and defined a cell as being CR-

sensitive if it showed a significant b3 coefficient in the interval 200 ï 1,200 ms after tone onset.  

To measure the sensitivity to EV_ITI and PR_ITI while accounting for the asymmetry of these 

modulations, we re-applied eq. 8 separately to trials ending in reward and reward omission. (For the 

latter trials, the CR term was dropped as it was always equal to 0). We defined a cell as being 

ñsensitiveò based on the trials with the strongest modulations (i.e., if it had a significant b2 coefficient for 

EV_ITI on rewarded trials, or a significant b1 coefficient for PR_ITI on unrewarded trials).  

To estimate effect latencies, we focused on the subset of cells that were sensitive for each factor and 

analyzed them with reduced models that included only an intercept term and the regressor of interest 

and was applied in a 50 ms window stepped by 2 ms after the corresponding trigger point (fixation point 

onset for PR, cue onset for EV and tone onset for CR, EV_ITI and PR_ITI). We identified the earliest 

pair of consecutive bins showing p < 0.01 for the respective coefficient and defined the latency as the 

start of the first of these bins.  

Because linear models of PR_RPE and EV_RPE that included all the necessary covariates (i.e. EV, PR 

and CR) produced inconsistent results, we examined the encoding of these quantities using cluster 

analysis and population decoding as described in the text and below.  

Representational similarity analysis. To examine the representation of the reward contingencies in the 

licking response, we calculated the LR on each trial in the 900 ms interval starting at cue onset, pooled 

the trials across all sessions within each monkey, and partitioned the pooled dataset into 35 bins 

defined by distinct combinations of 7 levels of EV and 5 levels of PR. We then computed the Anderson-

Darling statistic (AD) as a measure of distance between the LR distributions in each possible pair of 

conditions (1,225 pairs; including those with identical contingencies) We repeated this procedure for 

each recorded cell using FR in the 900 ms interval starting at cue onset and pooling trials across all 

neurons that contributed at least 2 trials within a bin. We then calculated the correlation coefficient, 

across the 1,225 pairs, between the AD distances in LR and FR, for each area and each monkey.  

Classification Analyses used the logistic classifier in the Classify[] function of Mathematica with 80/20 

cross validation and 100 random replications for each variable (EV, PR, CR, EV_RPE, PR_RPE). We 

measured accuracy as the fraction of test trials that were assigned to the correct category.  We 



obtained the baseline level of accuracy given the label distribution for each replication by computing 10 

additional classifications on the same trials but with shuffled labels. We defined the excess accuracy as 

the difference between the average classification accuracy on the real and shuffled data. Excess 

accuracy was estimated for each session and statistics were conducted across sessions. For neuronal 

responses, the input to the classification was the trial-by-trial FR of all the neurons that were 

simultaneously recorded in each area in that session. For licking classification analyses, the predictor 

was the trial-by trial LR over the time window of [-300 300] from cue onset for PR_RPE, and [0 900] 

from cue onset for EV_RPE. The target classes were EV_RPE or PR_RPE (signed and unsigned 

separately) trained using all trials.  

  



 

 

Table 1. Neural modulations and area comparisons. The major vertical sections show, from left to right, the 

proportion of cells with significant effects (fraction (number)), the regression coefficient across the significant cells 

(mean±sem) and the latencies for significant cells (mean±sem). Each section gives the data for dlPFC and 7A, 

and the p-value for a statistical comparison across the two areas (left column, z-test of proportions; center and 

right column, two-sample tests as indicated in the text).   The major horizontal sections show the signals 

discussed in the text, for positive encoding cells (+), negative encoding cells (-), and all the significant cells.  EV, P 

and M effects are based on analyses in the 300 ï 900 ms after cue onset; PR selectivity is based on 0 ï 1,000 ms 

after fixation onset; and all the post-reward (ITI) effects were measured between 200 and 1,200 ms after tone 

onset. The analyses are based on the full data set (1,298 neurons in the dlPFC and 736 in 7A).  

 



 

Table 2. Correlations between regression variables. Each entry shows the Spearman correlation between the 

regression coefficients of a pair of variables (measured as in Table 1) across all the neurons in each area. 

White/gray shading indicates signals estimated during, respectively, the pre-reward and post-reward epochs.  * p 

< 0.05; **p < 0.01; ***p < 0.0001 
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Figure S1. Cues and learning. (A) The 20 cues and their assignment to combinations of reward 

magnitude and probability. Each cue was a 3x3 colored checkerboard (ñMondrianò), with each tile taking one of 

5 possible colors that were defined in DKL space and isoluminant within 2cd. The distance between a pair of cues 

was the number of tiles that would need to be replaced for the cues to become identical. Individual cues were 

generated by randomly assigning colors to tiles, with the constraint that all distances are at least 4 tiles. The cues 

shown here were used for both monkeys. The reward mapping is shown for monkey 1 and was randomized for 

monkey 2 (not shown). (B) Absence of cue-specific learning. For each probabilistic cue (P52, P25, P57, P50, 

P75 in Fig. 1B) we computed the LR modulation based on PR (Methods, Eq. 1-3) restricting the trials to previous 

presentations of the same cue pattern or the same reward contingency. The histograms show the distribution of 

PR coefficients across sessions for each monkey. Had the monkeys updated the cue values the coefficients 

should be positive, indicating more LR after a large, versus a small, prior reward for that cue or contingencies. 

However, no distribution was different from 0 for the individual cues (monkey 1, p = 0.15; monkey 2, p=0.16) or 

reward contingency (monkey 1, p = 0.1; monkey 2, p = 0.06), showing that the monkeys were using pre-learned 

distributions for these highly familiar cues.  

 



 

Figure S2. Recording sites. Intraoperative photographs showing array placements. (A) The dlPFC arrays were 

implanted between the arcuate sulcus (AS) and the principal sulcus (PS), slightly more dorsal in monkey 1 

relative to monkey 2 because of vascular anatomy.  (A) The 7A arrays were implanted between the intraparietal 

sulcus (IPS) and superior temporal sulcus (STS), in the posterior portion of this area that has been targeted in 

recent studies. 

  



 

Figure S3. Diversity of individual neuron responses to PR_RPE (A) and EV_RPE (B) Vectors of mean 

deviations were constructed for each cell (as described for Fig. 8A,B, but using the signed rather than absolute 

values), and then analyzed with k-means clustering with correlation-distance and k chosen for each area based 

on scree plots. Clusters are ordered according to size in each area. All other conventions are as in Fig. 8A,B. 

 

 


